
In:. J Heal Moss TransJk Vol. 34. No. 9. pp. 2265-2273, 1991 
Prmted III Great Britain 

0017-Y3101Yl %3.M)+o.o0 
c 1991 Pergamon Press plc 

Analysis of combined conductive and radiative 
heat transfer in a two-dimensional rectangular 
enclosure using the discrete ordinates method 

TAIK YOUNG KIM and SEUNG WOOK BAEK 

Korea Advanced Institute of Science and Technology, 
Aerospace Engineering Department, P.O. Box 150, Cheongryang, Seoul, Korea 

(Rrcciwd 29 June 1990 und in ,jinal ,fhr 21 September 1990) 

Abstract-An efficient tool to deal with multidimensional radiative heat transfer is in strong demand to 
analyse the various thermal problems combined either with other modes of heat transfer or with combustion 
phenomena. The current study examines the discrete ordinates method (DOM) for coupled radiative and 
conductive heat transfer in rectangular enclosures in which either a non-scattering or scattering medium 
is included. The results are compared with the other benchmark approximate solutions, The efficiency and 

accuracy of the DOM are thus validated. 

1. INTRODUCTION 

RADIATION either combined with other modes of heat 

transfer or with combustion phenomena in a multi- 
dimensional enclosure such as a combustion chamber, 
furnace and porous medium has received much atten- 

tion due to a realization ofits importance in the associ- 
ated application fields. However, since an exact ana- 
lytical solution to the highly non-linear integro- 
differential radiative transfer equation (RTE) is nearly 
impossible to find, an efficient tool to deal with multi- 

dimensional radiative heat transfer is in strong 
demand to analyse various thermal problems. 

Although in the past decades a variety of com- 
putational schemes have been developed to obtain 
an approximate solution to RTE, each scheme has 
demerits as well as merits in its application. Tech- 
niques formerly used to attack RTE include the 

Eddington and Schuster-Schwarzchild approxi- 

mations [I]. Even if the Monte Carlo [2] and zone 

[3] methods are called exact numerical solutions, the 

former consumes an excessively large computational 
time and the latter is not easily applicable to analysing 

a radiatively scattering medium. Furthermore, most 
of the methods previously adopted to solve RTE are 

incompatible with the finite difference algorithm used 
in solving the continuity, momentum and energy 
equations which are involved in various thermal and 

fluid mechanical problems. 

Bayazitoglu and Higenyi [4] and Menguc [S] 
made it possible to apply the spherical harmonics 

method, the so-called P,+ approximation, to the 
multidimensional radiative heat transfer problems. 
Although this development of the mathematical tech- 

nique used in the & approximation rendered it easier 
to obtain a solution to RTE, it still consumed a lot 
of computational time and a significant effort was 

required for rederiving the governing equations and 
boundary conditions to improve the accuracy of its 

solution. The finite element method was also 

employed for the calculation of a coupled conductive 
and radiative heat transfer problem in two-dimen- 

sional rectangular enclosures [6]. However it was 

found to be not only time consuming, but also difficult 
to apply to a scattering medium. 

Among others the DOM (S, method) has recently 

received increasingly more attention because of its 
efficient integration with other finite differenced trans- 
port equations. This method, conceptually, belongs to 

a family of flux models, but corrects lack of couplings 
among the directional intensities present in some of 
the conventional flux models. In the DOM, the 
integro-differential RTE is solved only in a fixed 
number of discrete directions. At first, this method 
was developed for application to the neutron trans- 
port equations by Carlson and Lathrop [7] and, there- 
after. it was computationally applied to a very limited 
number of radiative heat transfer problems. Recently 
a number of applications to two-dimensional rec- 
tangular and hexahedral enclosures [8,9] and axi- 
symmetric cylindrical geometries [IO, 1 I] have been 
accomplished by employing the S, approximation. It 
was also applied to a three-dimensional absorbing, 
emitting and scattering medium by Fiveland [ 121 and, 
therein, the stability and accuracy of its solution were 
discussed as well. 

The current study examines the DOM for a coupled 
conductive and radiative heat transfer in a two-dimen- 
sional rectangular enclosure, of which solutions for a 
non-scattering medium were benchmarked with both 

the finite element method [6] and the numerical 
method using a generalized exponential integral func- 
tion [13]. The results are also compared with those for 
an anisotropically scattering pure radiation solution 
obtained by the product-integration method [ 141. 
After validating the accuracy and efficiency of the 

DOM in this way, it will be applied to the aniso- 
tropically scattering radiation-conduction problem, 
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NOMENCLATURE 

(‘1, linear anisotropic phase function ::,, wall emissivity 
coefficient 0 dimensionless temperature 

,4. B areas of each control volume face il. < direction cosines 
G dimensionless intensity ri Stefan-Boltzmann constant 
H* heat function 00 scaltering coefficient 
I intensity T/I optical height 
h- thermal conductivity T/ optical width 
n unit normal vector (D scattering phase function 
X reinduction to radiation parameter (1JiI scattering albedo 

4 heat flux vector !2. R’ outward and inward directions of 

Q dimensionless heat flux radiation. 
r dimensionless position vector 

T temperature 
t’ volume of P th control volume Subscripts and superscripts 

.Y, 1’ coordinates in Cartesian system nr. t77’ direction of the discrete ordinates 

A’, I; dimensionless coordinates in Cartesian I?. s, e. w control volume faces surrounding 
sys1cn1. node point P 

P centre of P ccl1 

Creek symbols R radiativo 

absorption coefficient w wall value 

extinction coefficient X, J‘ directions of each coordinate. 

which has not been solved before. In this work the with the optical width T,. and height z,, is considered. 

conductive term is discretized using the central differ- The energy conservation equation consisting of both 

cnce scheme, and the S, approximation is adopted to radiative and conductive heat transfers in an intini- 

model the term of divergence of radiative hcdt flux in tesimal control volume can be expressed as follows : 
the energy equation. Different from the former works, 
the solutions will be presented using isothermal con- kV’T-V.qR = 0 (I) 

tours, vectorial plots ofconductive. radiative and total 
heat fluxes, and heat lines for easy understanding of 

where the divergence of the radiative heat flux q” is 

the phenomena involved. 

given by 

2. ANALYSIS 

2.1 , Basic cqucitions 

The physical model and coordinate system arc 
The energy equation (I) can then be rewritten as 

dcpictcd in Fig, 1 in which a rectangular cnclosurc 1 i%(r) 1 ?%J(r) 

x 1 SURFACE 4 _ 

by introducing the following dimensionless variables 

and pardmctcfs : 

x = p_‘:‘7, , fi = ji,r,iT,,, 5, = [Ifa. TIi = [iH, 

to,, = a,,!'/L N = h$liloT:. 0 = T.!T,, G = MT:. 

(4) 

In the above expressions .N is the conduction to radi- 
ation parameter and ~~~~~ the scattering albedo with a. 
(T,, and [j the absorption, scattering and extinction 

E 3zlVdmlS A coefficients of the medium, respectively. T and I are 

FIG. I. Schematic ofthe coordinate system in the rectangular the temperature and radiative intensity. 

enclosure. If the temperature of the left-hand wall (surface I) 
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is maintained at T, with other walls at T,, the domain 
becomes symmetric with respect to Y = l/2. There- 
fore, only the lower half plane is considered and 
analysed here. Then the dimensionless boundary con- 
ditions for equation (3) become 

O(0. Y) = 1 

@(I, Y) = @(X,0) = 02 

dO(X, l/2)/% Y = 0 

where OL = rz/r,. 

(5) 

The dimensionless RTE, which represents the 
balance of energy passing in a specified direction !J 
through a small differential volume in an absorbing, 
emitting and scattering medium, can be written as 

where the linear anisotropic scattering phase function 
CI, of energy transfer from the incoming direction 0’ 
to the outgoing direction R can be represented as 

@@‘-+R) = I +cI&p’+((‘) (7) 

where ii and r are the direction cosines of R as shown 
in Fig. I. Whereas the left-hand side of equation (6) 
represents the gradient of radiative intensity in the 
direction of propagation, the terms on the right-hand 
side illustrate, respectively, the attenuation of inten- 
sity due to absorption and out-scattering, and the 
contribution to the directional intensity due to both 
the emission from the medium and the in-scattering. 
The radiative boundary condition for a diffusely 
reflecting and emitting surface is given by 

E,e4(rw) 
G(r,,Q) = _II_ 

1 -.Fw 
11 +TI s 

In*R’]G(r,,R’)dR’ 
n.ll 

@I 

where E, is the surface emissivity, n the unit normal 
vector and subscript w denotes the location of 
the boundary surface. The dimensionless intensity, 
G(r,,n), leaving the boundary surface is composed 
of two terms; one indicating a contribution to the 
outgoing intensity due to emission from the surface 
and the other, the reflection of incoming radiation 
into the outgoing intensity. 

2.2, Discrete ordinate equations 
In the DOM, equation (6) is solved in a finite num- 

ber of directions spanning a full range of the total 
solid angle. A discrete equation for a single subscript 
m, which is derived from the RTE by substituting a 
quadrature summed over each ordinate direction into 

Table I. The ordinate direction and weighting factors for the 
S, approximation (one octant only) 

Positive 
direction 
number 

I 
2 
3 

Ordinates Weight 
P,,, L, % H;,, 

0.29588 0.29588 0.90825 0.52360 
0.90825 0.29588 0.29588 0.52360 
0.29588 0.90825 0.29588 0.52360 

the integral term in equation (6), can be written as 

The following radiative boundary conditions are then 
obtained from equation (8) : 

G”’ = G”” for c,,, = - &,,. ; c,, < 0 at Y = 0.5 

(10) 

where m and m’ denote the outgoing and incoming 
directions, respectively. 

The choice of ordinate directions a,, and quadratic 
weighting factor rt’,,, is arbitrary, although the sym- 
metry and invariance properties of the physical system 
are to be preserved. However, a completely symmetric 
quadrature is to be preferred because of its generality 
[7]. Generally there are n(ni2) directions for 
n = 2,4,6, . . . . This n is the subscript of the commonly 
used S,, discrete ordinates scheme. For the present 
study, 24 discrete directions have been chosen and it 
is called the S, approximation (n = 4). But there are 
only 12 independent directions, because an J-Y sym- 
metry plane exists for the normalized intensity G. The 
ordinate directions and quadratic weighting factors, 
which are used in this study, are given in Table 1 
following the works of Fiveland [ 121. 

2.3. De$‘nition of heat,flu.wes and heat lines 
The dimensionless directional heat fluxes, Q., and 

Q,., consist of both conduction and radiation. They 
are thus defined as follows : 
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where the first and second terms on the right-hand 

side are dimensionless conductive and radiative heat 
fluxes, respectively. 

The concept of the heat line was discussed by some 
researchers like Kimurd and Bejan [I 51 and Aggarwal 
and Manhapra [16]. The heat function H* can be 

derived from the energy conservation equation (I), 
and is defined as 

As such the net energy flow across the heat lines 

becomes zero as if no mass flow occurs across the 
streamline in fluid mechanics. In this study the heat 
line as well as the isotherm are plotted to describe the 
heat flow pattern. 

2.4. Nunwicul nwtiiod 

By integrating equation (9) over a control volume 
as shown in Fig. 2. the following equation is obtained : 

~?4,,(c:;-c:l')+ ~Bp(G:;-~:") = - v,,(G;+~) 

(13 

where 

A,, = A YP, B,, = AX,, I’, = A Y,>AX,> 

s = (1 -4 @” 

P 
n 

+ y; t Ii’,,, { l +%(P,,,P,,, +<,,L )JG: (14) 
r,/ 

N 

t 

n 

W 
WO 

e 
l E 

P 

AP 

s 
BP 

1 
S 

FIG. 2. Schematic of grid points and control volume for the 
computation. 

To relate the facial intensities at the boundary of the 
control volume to the cell centre intensity, an equally 
weighted approximation is used 

2G:” = G;; + G;:‘. (15) 

In the above. i represents the spatial directions, .X and 

_I’. Subscripts r, e and c denote the reference face or 
cell ccntre from which a bundle of intensity originally 

comes, the end face or cell centre at which the intensity 
arrives, and the middle point of neighbours, rcspcc- 
tively. For a positive set of ( I’,,~. f,,,). r. c and e arc 

defined as (IV, P, c) with respect to the .y-direction and 
(s. P.n) with respect to the _r,-direction. Then for the 
reference facial point, r, c and e become (W, W, P) with 

respect to the .x-direction and (S, s. P) with respect to 
the r-direction. 

Rearranging for the normalized intensity G;:’ by 
eliminating the facial intensities making use of equa- 
tion (I 3) results in 

where r must be the reference point in the ordinate 
direction. 

A procedure in the numerical calculation starts by 
assuming that all the boundaries are black and no in- 
scattering exists. Calculation at each inner point is 
accomplished for all ordinate directions, starting from 
the top-right point and marching in the negative X- 
and !-directions. After one iteration has been com- 
pleted over a whole domain. the real value of wall 
cmissivity as well as the in-scattering effect is taken 
into account. In this study the conductive terms in the 
total energy equation (3) are discretized by the central 
difference scheme and a uniform grid system is 
adopted. A typical computing time for each case 
requires only 34 min by using an IBM-AT personal 

computer powered by one transputer chip for boost- 
ing computing speed. The efficiency of the DOM is, 
therefore. validated here and the accuracy of the solu- 

tion obtained is discussed in the following section. 

3. RESULTS AND DISCUSSIONS 

In the present study calculations have been carried 
out for several cases to investigate the effects of con- 
duction to radiation parameter, N, wall emissivity, a,, 
scattering albedo, LIJ,), the parameter a, in the linearly 
anisotropic scattering phase function, CD, and charac- 
teristic optical width 7,~ and height z,,. In all cases 
the dimensionless cold temperature 0, in condi- 
tions (5) is set to 0.5. 

Figures 3 and 4 show the temperature and 
dimensionless total heat flux Q(Q = Q,+Q,,) along 
the x-direction at the symmetry line Y = 0.5 for 
various values of N. In addition, therein (oO = 0 is 
assumed, which represents a non-scattering medium 
in which the radiation is emitted and absorbed only. 
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1 N 11 S4 IYuen’s 1 FEMl 

0.5 L 
0.0 0.2 0.4 0.6 0.8 1.0 

DIMENSIONLESS COORDINATE X 

FIG. 3. Dimensionless temperature profiles for various con- 
duction to radiation parameters N along the symmetry line, 

Y = 0.5. 

As Ndecreases, radiation plays a more significant role 
than conduction. Therefore, as N decreases, a steeper 
temperature gradient is formed at both end walls (sur- 
faces 1 and 2) and the medium temperature inside 
increases as shown in Fig. 3. This fact is more clearly 
reflected in Fig. 5 which illustrates the isothermal con- 
tours and heat lines depicted, respectively, in the lower 
and upper half regions of the entire domain for 
N = 0.001 and 1.0. In the figure the non-dimen- 
sionalized temperature difference between two neigh- 
bouring lines is A110 = 0.05. For N = 0.001 the radi- 
ative energy emitted from the wall can penetrate more 
deeply into the medium and is therein transformed 
into thermal energy. Therefore, the last isotherm of 
0 = 0.55 for N = 0.001 is formed very close to the 
right-hand cold wall (surface 2) compared with that 

---__ 
=--h”_-53zzrr==z; 

1 t I / 

0.0 0.2 0.4 0.6 0.8 1.0 

DIMENSIONLESS COORDINATE X 

FIG. 4. Variation of total heat flux for various conduction 
to radiation parameters N along the symmetry line, Y = 0.5. 

l-_..l V. ,5 for all cases 
0.35 Gl 
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zi 
E 
Ej 

0.0 
0.0 0.5 1.0 

DIMENSIONLESS COORDINATE X 

FIG. 5. Isotherms for the lower half region and heat lines for 
the upper half region with two values of N, 0. I and 0.001. 

for IV = 0. I. An excessively steep temperature gradi- 
ent is established near the lower-left-hand corner 
where surface I intersects surface 3, as can be estimated 
in Fig. 5, and therein the conduction is predominant 
over the entire region as will be shown in Figs. 6 
and I. 

Figure 4 indicates. however, that the total heat flux 
Q becomes evidently much higher as N increases, i.e. 
the conduction mode becomes predominant. There- 
fore, as N decreases the heat blockage effect is 
observed and the total heat flux is made uniform along 
the symmetry line Y = 0.5. The total heat flow pattern 
is also shown in Fig, 5 where the value of the heat 
line is zero on the symmetry line and the difference 
between two neighbou~ng heat lines is 0.05. Thus the 
total heat flow rate is constant between two heat lines 
and the total heat flux decreases as the gap between 
two lines increases. Furthermore, it must be noted 
that the heat transfer cannot take place across the 
heat lines. Since conduction plays a significant role 
for N = 0.1 compared with N = 0.001. heat lines are 
more bent toward the top cold wall (surface 4) and 
concentrated near the upper-left-hand corner region 
where surfaces 1 and 4 are interconnected. This means 
that the conductive heat loss mainly occurs in that 
corner. Since for N = 0.001 the number of heat lines 
is small in comparison with IV = 0.1, the total heat 
transfer rate from the hot wall (surface I) is reduced 
as much for N = 0.001. 

The total heat flux distribution is more clearly illus- 
trated in Fig. 6, in which the vectorial plots of con- 
ductive. radiative and total heat fluxes are separately 
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Conductive heat flux 
0.5e = z z _ : - kO*SE 

Radiative heat 

0.5 
Total heat flux 

N=O.l 

x 
r;=l.O 
4=&O 
x=-&=1.0 

0.0 

FIG. 6. Vectorial piols oi’cctnductive. radiative and total heut ffuwes. 

presented. Figure 7 shows a variation ofthe fractional 
radiative heat flux QR/Q along the jj-direction at the 
left-hand hot wall (surface 1) and right-hand cold wall 
(surface 2). In general the fractional radiative heat 
flux is seen to decrease as iv increases. In the hot wall 
corner region, the afore~~etltioIled extremely large 
temperature gradient produces a great deal of con- 
ductive heat flux as IV increases. This can be more 
evidently noticed in Fig. 6 although not as much of a 
change in the radiative heat Rux occurs in that corner 

region. For Iv = 0.00 I, Q”/Q becomes nearly uniform 
along both end walls as shown in Fig. 7. 

The accuracy of the present solutions is compared 
with the tabulated results of the generalized expon- 
ential integral function by Yuen and Takara [13] as 
well as the graphic results of the finite element method 
by Razzdque et cri. 161. The tempe~dturc profile in Fig. 
3 and total heat flux distribution in Fig. 4, which 
arc generated by the present S., approximation, are 

left hot nal. 

0.0 0.1 0.2 0.3 0.4 0.5 

DIMENSIONLESS COORDINATE Y 

FIG. 7. Variation of fractional radiative heat flux for various 
conduction to radiation parameters N at the left-hand hot 

observed to be in very good agreement with the bench- 
mark solutions previously referred to. Thercforc, the 
DOM is considered to be very efficient and accurate. 

Figure 8 represents a total heat flux variation with 
various wall emissivitics E, at the hot wall (surface 
1) for IV = 0.05 and (IJ~, = 0. As the wall cmissivity 
increases, the intensity at the hot wall becomes strong 
and it further increases the radiative heat flux and the 
temperature of the medium inside. The temperature 
gradient in the vicinity of the hot wall is thus reduced 
and the conductive beat ffux therein is reduced by as 
much. This etTect of emissivify is found to be more 
pronounced for a thicker medium which has a higher 
optical thickness. In the figure the present solutions 
obtained by means of the S, approximation arc shown 
to be very accurate compared with the marked solu- 
tions obtained by FEM [6], In Fig. 9 the fractional 
radiative heat flux variation at the symmetry line 
I’ = 0.5 and bottom wall (surface 3) is illustrated. In 

0.0 0.1 0.2 0.3 0.4 0.5 

DIMENSIONLESS COORDINATE Y 

b. 8. Variation of total heat flux for various wdtk emiss- 
wall, X = 0. and at the right-hand cold wall. X = 1. ivities c, at the left-hand hot wall, X = 0. 
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bottom and top cold 
[wall (surface 3.4) 

0.u 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.8 0.8 1.0 

DIMENSIONLESS COORDINATE X DIMENSIONLESS COORDINATE X 

FIG. 9. Variation of fractional radiative heat flux for various 
wall emissivities 8, at the symmetry line, Y = 0.5, bottom 

and top walls, Y = 0, 1. 

FIG. Il. Dimensionless temperature profiles for various 
aspect ratios T&” along the symmetry line, Y = 0.5. 

general as E, increases, the radiation becomes domi- 
nant owing to the strong intensity emitted from the 
hot wall (surface I). Along the bottom or top wall, 
Q”/Q is symmetrically distributed with a maximum 
at its centre. However, on the symmetry line Q”/Q 
steadily increases from the hot wall (X = 0) to the 
cold wall (3’ = 1). 

Figure IO shows the effect of albedo w0 and par- 
ameter a, in the linearly anisotropic scattering phase 
function @ on the total heat flux at the hot wall for 
N = 0 and 0.0 I. The values of a, = I,0 and - 1 denote 
forward, isotropic and backward scattering, respec- 
tively. As shown in the figure, the total heat flux Q is 
significantly influenced by the type of scattering. In 
order to check the accuracy the total heat flux for 

1.2 

0.6 / I I I 

0.0 0.1 0.2 0.3 0.4 0.5 

DIMENSIONLESS COORDINATE Y 

FIG. 10. Variation of total heat flux for various scattering 
albedos wO, and coefficients of linear anisotropic scattering 

phase function a, at the left-hand and hot wall. X = 0. 

the limiting case, N = 0, which characterizes a purely 
radiating medium without conduction involved, is 
compared with the solution obtained by the product- 
integration method 1141. Note that the total heat Bux 
becomes higher as the parameter ~~~~ increases. The 
reason is that the strong forward scattering intensifies 
the amount of radiation in that direction. On the 
contrary, the backward scattering diminishes the for- 
ward radiative intensity. The case for oOur, = 0 cor- 
responds to a non-scattering medium in which only 
absorption and emission take place. 

A variation of dimensionless temperature along the 
symmetry line for different aspect ratios (T&,,) with 
N=O.l,a,= 1 ando,=OisshowninFig. ll.The 
temperature profile for rL/rH = 0.2 nearly approaches 
that for the one-dimensiona case, xL/rf, = 0. It is 
taken for granted that as ?Jtl, increases, the medium 
temperature very quickly reaches the right-hand cold 
wall temperature 0, = 0.5. 

In Fig. 12, the total heat flux variation for various 
characteristic optical thicknesses (7,. or rl,) of the 
square enclosure with N = 0.001, E, = 1 and CL)” = 0 
is plotted along the symmetry line. In the figure, as 
the characteristic optical thickness (T!, or 7!,) decreases 
for fixed N = 0.001, the total heat flux increases. Phys- 
ically the decrease in TV or tH, with no change of N, 
means a reduction of the spatial size of the square 
encfosure because the value of each component, 8, k 
and T, in N is fixed in this case. Therefore, Fig. 12 
illustrates that as the size of the square enclosure is 
reduced, the heat loss from the enclosure increases. 
This can be more clearly shown in the two-dimen- 
sional configuration of heat line H* in Fig. 13 as was 
done in Fig. 5. As the optical thickness increases, the 
number of heat lines decreases and thus the total 
heat loss from the enclosure decreases as well. The 
comparison of the present results with those obtained 
by the numerical method using the generalized expon- 
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1.5 , 

for all cases N=O.OOl 

&Fl 
G&=0 

y -:_::I ‘--4_ 
T/TH= 1 

1‘7t--__ 
.‘,. . . . ---_ 

. . . ‘.... .. . . . 

--_a 
‘-_ 

---_ ._ 
----.3-_,__ 

--___ 

-e----_____ 

0.0 
0.0 0.2 0.4 0.6 0.8 1.0 

DIMENSIONLESS COORDINATE X 

FIG. 12. Variation of the total heat flux for various optical 
widths or heights (T, or T,,) of the square enclosure 

(r,it,, = 1) along the symmetry line, Y = 0.5. 

ential integral function [13] shows a good agreement 
as shown in Fig. 12. 

4. CONCLUSIONS 

In this study a combined radiative and conductive 
heat transfer has been investigated in rectangular 
enclosures. The accuracy and efficiency of DOM (S, 
approximation) were validated by comparing the 
numerical results for the non-scattering radiation- 

H* =0 

*zo.o5 AH+=0.05 
X/T! = I 

_.- 
0.0 0.5 1.0 

DIMENSIONLESS COORDINATE X 

Fit;. 13. Isotherms for the lower half region and heat lines 
for the upper half region with three optical widths or heights 

(5,. or T,,)? 0.1. I .O and 5.0. 

conduction problem as well as the anisotropically 
scattering pure radiation problem with other bcnch- 
mark solutions. It is then applied to the aniso- 
tropically scattering radiation conduction problem to 
seek new solutions. The results for the tcmpcraturc 
distribution and isothermal contours wcrc illustrated. 
Additionally to easily figure out the involved phcnom- 
cna, the heat lines and the vectorial plots 01‘ the 
conductive. radiative and total heat tluxcs wcrc also 

introduced and discussed. Conclusively the discrctc 
ordinates method is considered to be highly intcgrablc 
with other finite diffcrcnccd transport equations. Fur- 
thermore, it was found that only a reasonably short 
computational time was rcquircd to yield quite accur- 
ate solutions. 
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ANALYSE A L’AIDE DE LA METHODE DES ORDONNEES DISCRETES DE 
CONDUCTION THERMIQUE DANS UNE CAVITE RECTANGULAIRE 

BIDIMENSIONNELLE 

RBsurn-Un outii efficace relatif au transfert radiatif multidimensionnel est recherche pour analyser Ies 
problemes thermiques varies et combines a d’autres modes de transfert de chaleur on avec la combustion. 
On examine la mbhode des ordonn&es disc&es (DOM) pour le couplage entre rayonnement et combustion 
thermiques dans des cavites rectangulaires avec ou sans diffusion ~yonnan~ du milieu. Les resultats sont 

compares avec d’autres solutions approch&.es. L’efficacite et la precision de la methode sont valid&es. 

UNTERSUCHUNG DES KOMBINIERTEN WARMEtiBERGANGS DURCH LEITUNG 
UND STRAHLUNG IN EINEM ZWEIDIMENSIONALEN RECHTECKIGEN HOHLRAUM 

UNTER VERWENDUNG DES VERFAHRENS DISKRETER ORDINATEN 

Zusammenfassung-Es besteht ein dringender Bedarf fiir ein effizientes Werkzeug zur Behandhmg der 
mehrdimensionalen WBrmeiibertragung durch Strahlung, urn unterschiedliche therm&he Probleme, bei 
denen andere Arten der Warmeiibertragung oder aber Verbrennungsvorglnge auftreten, zu untersuchen. 
In der vorliegenden Arbeit wird das Verfahren der diskreten Ordinaten (DOM) fur den gekoppelten 
~rme~~rgang durch Strahhmg und Leitung in einem rechteckigen Hohlraum untersucht, in dem sich 
entweder ein nicht-streuendes oder ein streuendes Medium befindet. Die Ergebnisse werden mit anderen 

N~herungsl~sungen verglichen. Die Wirk~mkeit und Genauigkeit van DOM wird dabei bestitigt. 

AHAJIH3 B3AMMOCBII3AHHOl-0 KOH~YKTMBHOFO li JIYYHCTOFO 
TElIJlOHEPEHOCA B ABYMEPHOB I-lPflMOYI-OJIbHOti C MCHOJIb30BAHHEM 

METOAA JJMCKPETHbIX KOOPJHiHAT 

.bIIOT~~~y~eCTByeT ocrpar HeO6XOAmfOCTb B ~@*KTHBHOM MeTOne rmcnenonamfa MHOTOMeP- 

HOBO nywcroi-0 Temonepeaoca ma amm3a pa3nerHbrx Termomx 3aAar,csn3aHwxnu6ocApyrem 

mAam TennonepeHoca, na60 c ~nnemtriMri roperiur. B nacronmeB paBore Mei-onoh+ A~~CK~THMX 

KOOpJWiaT (DOi%%) SicCneZIyeTCX iUaWMOCBR3aHHbIfi 31y%icTMfi W KOHJI~KT%~BHE& TeIIJIOIIepeHGC B rips- 
MO)'~OJibHblX nOJlocTl%X,B KOTOPbIX c0AepmiTc.n Hepacceasamolsan EmSi paccemamuran cpeAa.cpaBrie- 

H~e~O~y~eHHbtX~yAbTaTOBCAp~f~A~PN6AH)KeHHbIMU~~eHH~MW~OATBePfKnaeT~~WBHOCTb 


