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Abstract—An efficient tool to deal with multidimensional radiative heat transfer is in strong demand to

analyse the various thermal problems combined either with other modes of heat transfer or with combustion

phenomena. The current study examines the discrete ordinates method (DOM) for coupled radiative and

conductive heat transfer in rectangular enclosures in which either a non-scattering or scattering medium

is included. The results are compared with the other benchmark approximate solutions. The efficiency and
accuracy of the DOM are thus validated.

1. INTRODUCTION

RADIATION either combined with other modes of heat
transfer or with combustion phenomena in a multi-
dimensional enclosure such as a combustion chamber,
furnace and porous medium has received much atten-
tion due to a realization of its importance in the associ-
ated application fields. However, since an exact ana-
Iytical solution to the highly non-linear integro-
differential radiative transfer equation (RTE) is nearly
impossible to find, an efficient tool to deal with multi-
dimensional radiative heat transfer is in strong
demand to analyse various thermal problems.

Although in the past decades a variety of com-
putational schemes have been developed to obtain
an approximate solution to RTE, each scheme has
demerits as well as merits in its application. Tech-
niques formerly used to attack RTE include the
Eddington and Schuster-Schwarzchild approxi-
mations [1]. Even if the Monte Carlo [2] and zone
[3] methods are called exact numerical solutions, the
former consumes an excessively large computational
time and the latter is not easily applicable to analysing
a radiatively scattering medium. Furthermore, most
of the methods previously adopted to solve RTE are
incompatible with the finite difference algorithm used
in solving the continuity, momentum and energy
equations which are involved in various thermal and
fluid mechanical problems.

Bayazitoglu and Higenyi [4] and Menguc [5]
made it possible to apply the spherical harmonics
method, the so-called P, approximation, to the
multidimensional radiative heat transfer problems.
Although this development of the mathematical tech-
nique used in the P, approximation rendered it easier
to obtain a solution to RTE, it still consumed a lot
of computational time and a significant effort was
required for rederiving the governing equations and
boundary conditions to improve the accuracy of its

solution. The finite element method was also
employed for the calculation of a coupled conductive
and radiative heat transfer problem in two-dimen-
sional rectangular enclosures [6]. However it was
found to be not only time consuming, but also difficult
to apply to a scattering medium.

Among others the DOM (S, method) has recently
received increasingly more attention because of its
efficient integration with other finite differenced trans-
port equations. This method, conceptually, belongs to
a family of flux models, but corrects lack of couplings
among the directional intensities present in some of
the conventional flux models. In the DOM, the
integro-differential RTE is solved only in a fixed
number of discrete directions. At first, this method
was developed for application to the neutron trans-
port equations by Carlson and Lathrop [7] and, there-
after, it was computationally applied to a very limited
number of radiative heat transfer problems. Recently
a number of applications to two-dimensional rec-
tangular and hexahedral enclosures [8,9] and axi-
symmetric cylindrical geometries [10, 11] have been
accomplished by employing the S, approximation. It
was also applied to a three-dimensional absorbing,
emitting and scattering medium by Fiveland [12] and,
therein, the stability and accuracy of its solution were
discussed as well.

The current study examines the DOM for a coupled
conductive and radiative heat transfer in a two-dimen-
sional rectangular enclosure, of which solutions for a
non-scattering medium were benchmarked with both
the finite element method [6] and the numerical
method using a generalized exponential integral func-
tion [13]. The results are also compared with those for
an anisotropically scattering pure radiation solution
obtained by the product-integration method [14].
After validating the accuracy and efficiency of the
DOM in this way, it will be applied to the aniso-
tropically scattering radiation-conduction problem,
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N conduction to radiation parameter

q heat flux vector

Q dimenstonless heat tflux

r dimensionless position vector

T temperaturc

b volume of Pth control volume

Y, v coordinates in Cartesian system

X, Y dimensionless coordinates in Cartesian
system.

Greck symbols
o absorption coefficient
B extinction coefficient

NOMENCLATURE

dy linear anisotropic phase function £ wall emissivity

coefficient o dimensionless temperature
A.B arcas of each control volume face i, & direction cosines
G dimensionless intensity a Stefan—Boltzmann constant
H*  heat function a4 scattering cocflicient
1 intensily Ty optical height

thermal conductivity 7, optical width

unit normal vector ] scattering phase function

Wy scattering albedo
outward and inward directions of
radiation.

Subscripts and superscripts
m., ' direction of the discrete ordinates
n.s,e,w control volume faces surrounding
node point P

P centre of P ccll

R radiative

w wall value

x. v directions of cach coordinate.

which has not been solved before. In this work the
conductive term is discretized using the central differ-
cnce scheme, and the S, approximation is adopted to
model the term of divergence of radiative heat flux in
the energy equation. Different from the former works,
the solutions will be presented using isothermal con-
tours, vectorial plots of conductive, radiative and total
heat fluxes, and heat lines for easy understanding of
the phenomena involved.

2. ANALYSIS

2.1, Basic equations
The physical model and coordinate system are
depicted in Fig. | in which a rectangular enclosurc

SURFACE 4

SURFACE 1
g HOVLINS

€ dAIVddNs X

FiG. 1. Schematic of the coordinate system in the rectangular
enclosure.

with the optical width 7, and height 1, is considered.
The energy conservation equation consisting of both
radiative and conductive heat transfers in an infini-
testmal control volume can be expressed as follows:

kVT—V-qt =0 )

where the divergence of the radiative heat flux g® is
given by

v-q° :4&(074&)—;] f(ﬂg)dg)' 2
Q= In

The energy equation (1) can then be rewritten as

1 &?Q(r) 1 03(~)(r)

AW 3 3
1; X t; YY"

_ (1 7—7(:)(!) fpoy 1
= N (@ (r) 4L_4n G(r,Q) dQ) 3

by introducing the following dimensionless variables
and parametcrs:

X = fxjt,, Y=fvit,. 1,=8L 1,=0H,

wo = 0o/f. N=kpldaT{, © =T/T,, G=IloT}

4

In the above expressions N is the conduction to radi-
ation parameter and v, the scattering albedo with «.
o, and f the absorption, scattering and extinction
coefficients of the medium, respectively. 7 and I are
the temperature and radiative intensity.

If the temperature of the left-hand wall (surface 1}
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is maintained at T, with other walls at 7', the domain
becomes symmetric with respect to ¥ = 1/2, There-
fore, only the lower half plane is considered and
analysed here. Then the dimensionless boundary con-
ditions for equation (3) become

00, Y) =1
(1Y) =0(X.0) = ©,
FO(X. 1/2)/3Y =0 (5)

where &, = T,/T,.

The dimensionless RTE, which represents the
balance of energy passing in a specified direction Q
through a small differential volume in an absorbing,
emitting and scattering medium, can be written as

§OGEQ) | £ OGED)
rj ox t,, oY Ge )
+ U290 gagy 4 m"f Q' - Q)G (r, Q) d
s 47 Joroix

©)

where the linear anisotropic scattering phase function
® of energy transfer from the incoming direction Q'
to the outgoing direction Q can be represented as

DY - Q) = | +ao(u’ +EE) 7

where u and ¢ are the direction cosines of Q as shown
in Fig. 1. Whereas the left-hand side of equation (6)
represents the gradient of radiative intensity in the
direction of propagation, the terms on the right-hand
side illustrate, respectively, the attenuation of inten-
sity due to absorption and out-scattering, and the
contribution to the directional intensity due to both
the emission from the medium and the in-scattering.
The radiative boundary condition for a diffusely
reflecting and emitting surface is given by

., ©* 1—
G(rW"Q):fLG‘)?(M""%J'

In-QG(r,, Q) dOY
€3
®

where ¢, is the surface emissivity, n the unit normal
vector and subscript w denotes the location of
the boundary surface. The dimensionless intensity,
G(r,.,Q), leaving the boundary surface is composed
of two terms; one indicating a contribution to the
outgoing intensity due to emission from the surface
and the other, the reflection of incoming radiation
into the outgoing intensity.

2.2. Discrete ordinate equations

In the DOM, equation (6) is solved in a finite num-
ber of directions spanning a full range of the total
solid angle. A discrete equation for a single subscript
m, which is derived from the RTE by substituting a
quadrature summed over each ordinate direction into
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Table 1. The ordinate direction and weighting factors for the
S, approximation (one octant only)

Positive
direction Ordinates Weight
number Hom ‘Em Mo Won
i 0.20588  0.29588  0.90825  0.52360
2 0.90825  0.29588  0.29388  0.52360
3 0.29588  0.90825  0.29588  0.52360

the integral term in equation (6}, can be written as

126G 5,067 (—wy)
Ay = T ———0
1, 06X 1y Y !
(U(D M r \Walll
+ == z W { 1 -+ al’)(ﬂm o + gm%m‘))’G . (9)

an

m

The following radiative boundary conditions are then
obtained from equation (8):

e s
: z Wy { o l G .
iy 0

&y 1

Gm = . + e
Fis 7

i, >0 atX =0

&, -8y "
G" = “®g+ mmmmmmmm Z “"m'llum'lG, ,
T n

;1,,,"; 0
Py <0 atX =1

£ I —g, ]
G™ = 2@ 4 et 0 AE NG
x @z -+ p ; W, lém ‘

Co <D

$n>0 atY=0
Gm — Gm' im < O at Y = 05

(10)

for im = om

where m and m” denote the outgoing and incoming
directions, respectively.

The choice of ordinate directions Q,, and quadratic
weighting factor w,, is arbitrary, although the sym-
metry and invariance properties of the physical system
are to be preserved. However, a completely symmetric
quadrature is to be preferred because of its generality
[7]. Generally there are n(n+2) directions for
n=2,4,6,.... Thisnis the subscript of the commonly
used S, discrete ordinates scheme. For the present
study, 24 discrete directions have been chosen and it
is called the S, approximation (n = 4). But there are
only 12 independent directions, because an x—y sym-
metry plane exists for the normalized intensity G. The
ordinate directions and quadratic weighting factors,
which are used in this study, are given in Table 1
following the works of Fiveland [12].

2.3. Definition of heat fluxes and heat lines

The dimensionless directional heat fluxes, @, and
Q,, counsist of both conduction and radiation. They
are thus defined as follows:
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O =-""5y +2 w06 (11
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where the first and second terms on the right-hand
side are dimensionless conductive and radiative heat
fluxes, respectively.

The concept of the heat line was discussed by some
researchers like Kimura and Bejan [15} and Aggarwal
and Manhapra [16]. The heat function H* can be
derived from the energy conservation equation (1),
and is defined as

CH* 0
ax =

CH* 1
—ay =0 (12)
As such the net energy flow across the heat lines
becomes zero as if no mass flow occurs across the
streamline in fluid mechanics. In this study the heat
line as well as the isotherm are plotted to describe the
heat flow pattern.

2.4. Numerical method
By integrating equation (9) over a control volume
as shown in Fig. 2, the following equation is obtained :

by
B 4(GE =G + 2 By (GY = GY) = —Vi(GE+5)

Ty Ty

(13)
where
Ap =AYp, By =AXp, V,=AY,AX,
s= 720 g

wy ¥ L ,
+ 0 z wm' { ] + (1()(#,,, .um’ + gmgln' ) } G’l”‘ . ( 14)
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FiG. 2. Schematic of grid points and control volume for the
computation.
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To relate the facial intensities at the boundary of the
control volume to the cell centre intensity, an equally
weighted approximation is used
26T =G+ Gy (15)

In the above, i represents the spatial directions, x and
. Subscripts r, e and ¢ denote the reference face or
cell centre from which a bundle of intensity originally
comes, the end face or cell centre at which the intensity
arrives, and the middle point of neighbours, respec-
tively. For a positive set of (,,.¢,,). r, ¢ and e are
defined as (w, P, ¢) with respect to the x-direction and
(s. P.n) with respect to the y-direction. Then for the
reference facial point, r, ¢ and e become (W, w, P) with
respect to the x-direction and (S. s, P) with respect to
the y-direction.

Rearranging for the normalized intensity G} by
eliminating the facial intensities making use of equa-
tion (13) results in

A!’LHmIG.'\”rf"?L + Bl)'CVm'G?;/ﬂLﬁI/PS (16)
Apl ol {71+ Bpl &l ity + Vi

Gy =

where r must be the reference point in the ordinate
direction.

A procedure in the numerical calculation starts by
assuming that all the boundaries are black and no in-
scattering exists. Calculation at each inner point is
accomplished for ali ordinate directions, starting from
the top-right point and marching in the negative x-
and y-directions. After one iteration has been com-
pleted over a whole domain, the real value of wall
emissivity as well as the in-scattering effect is taken
into account. In this study the conductive terms in the
total energy equation (3) are discretized by the central
difference scheme and a uniform grid system is
adopted. A typical computing time for each case
requires only 34 min by using an IBM-AT personal
computer powered by one transputer chip for boost-
ing computing speed. The efficiency of the DOM is,
therefore. validated here and the accuracy of the solu-
tion obtained is discussed in the following section.

3. RESULTS AND DISCUSSIONS

In the present study calculations have been carried
out for several cases to investigate the effects of con-
duction to radiation parameter, N, wall emissivity, ¢,
scattering albedo, w,, the parameter a, in the linearly
anisotropic scattering phase function, ®, and charac-
teristic optical width 7, and height 7,. In all cases
the dimensionless cold temperature ©, in condi-
tions (5) 1s set to 0.5.

Figures 3 and 4 show the temperature and
dimensionless total heat flux ¢(Q = Q.+ Q,) along
the x-direction at the symmetry line ¥ =0.5 for
various values of N. In addition, therein wy, =0 1s
assumed, which represents a non-scattering medium
in which the radiation is emitted and absorbed only.
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Fic. 3. Dimensionless temperature profiles for various con-
duction to radiation parameters N along the symmetry line,
Y =05

As N decreases, radiation plays a more significant role
than conduction. Therefore, as N decreases, a steeper
temperature gradient is formed at both end walls (sur-
faces 1 and 2) and the medium temperature inside
increases as shown in Fig. 3. This fact is more clearly
reflected in Fig. § which illustrates the isothermal con-
tours and heat lines depicted, respectively, in the lower
and upper haif regions of the entire domain for
N =0001 and 1.0. In the figure the non-dimen-
sionalized temperature difference between two neigh-
bouring lines is A® = 0.05. For N = 0.001 the radi-
ative energy emitted from the wall can penetrate more
deeply into the medium and is therein transformed
into thermal energy. Therefore, the last isotherm of
® = 0.55 for N = 0.001 is formed very close to the
right-hand cold wall (surface 2) compared with that

4.0
N S84 [Yuen’s
1 °
0.1 - [s]
0.01 |- a
3.0 - 0.001||--——| ©
0 I
for all cases
=1
w=0

=51

DIMENSIONLESS TOTAL HEAT FLUX ¢
I
©
T

1.0 - T
~\'D-\
R -
e N
AW.‘“:: _________
6.0 i H 1 i
0.0 0.2 0.4 0.6 0.8 1.0

DIMENSIONLESS COORDINATE X

F16. 4. Variation of total heat flux for various conduction
to radiation parameters N along the symmetry line, ¥ = 0.5.
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F1G. 5. Isotherms for the lower half region and heat lines for
the upper half region with two values of N, 0.1 and 0.001.

for N = 0.1. An excessively steep temperature gradi-
ent is established near the lower-left-hand corner
where surface | intersects surface 3, as can be estimated
in Fig. 5, and therein the conduction is predominant
over the entire region as will be shown in Figs. 6
and 7.

Figure 4 indicates, however, that the total heat flux
@ becomes evidently much higher as N increases, i.e.
the conduction mode becomes predominant. There-
fore, as N decreases the heat blockage effect is
observed and the total heat flux is made uniform along
the symmetry line ¥ = 0.5. The total heat flow pattern
is also shown in Fig. 5 where the value of the heat
line is zero on the symmetry line and the difference
between two neighbouring heat lines is 0.05. Thus the
total heat flow rate is constant between two heat lines
and the total heat flux decreases as the gap between
two lines increases. Furthermore, it must be noted
that the heat transfer cannot take place across the
heat lines. Since conduction plays a significant role
for N = 0.1 compared with N = 0.001, heat lines are
more bent toward the top cold wall (surface 4) and
concentrated near the upper-left-hand corner region
where surfaces 1 and 4 are interconnected. This means
that the conductive heat loss mainly occurs in that
corner. Since for N = 0.001 the number of heat lines
is small in comparison with N = 0.1, the total heat
transfer rate from the hot wall (surface 1) is reduced
as much for N = 0.001.

The total heat flux distribution is more clearly illus-
trated in Fig. 6, in which the vectorial plots of con-
ductive, radiative and total heat fluxes are separately
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FiG. 6. Vectorial plots of conductive, radiative and total heat fluxes.

presented. Figure 7 shows a variation of the fractional
radiative heat flux Q®/Q along the p-direction at the
left-hand hot wall (surface 1) and right-hand cold wall
(surface 2). In general the fractional radiative heat
flux is seen to decrease as N increases. In the hot wall
corner region, the aforementioned extremely large
temperature gradient produces a great deal of con-
ductive heat flux as N increases. This can be more
evidently noticed in Fig. 6 although not as much of a
change in the radiative heat flux occurs in that corner
region. For N = 0.001, Q%/Q becomes nearly uniform
along both end walls as shown in Fig. 7.

The accuracy of the present solutions is compared
with the tabulated results of the generalized expon-
ential integral function by Yuen and Takara [13] as
well as the graphic results of the finite element method
by Razzaque et «i. [6]. The temperature profile in Fig,
3 and total heat flux distribution in Fig. 4, which
are generated by the present S, approximation, are

-
o

right cold wall
(surface 2)

o
)
T

left hot wall
(surface 1)

0.6 - FommmmmemmmEE
//’/ N S4
" for all cases|l
0.4 F =1 g-{l) —
R 1)

FRACTIONAL RADIATIVE HEAT FLUX @/
o
P
T

o
@

0.1 0.2 0.3 0.4 0.5

DIMENSIONLESS COORDINATE Y

0.0

Fic. 7. Variation of fractional radiative heat flux for various
conduction to radiation parameters N at the left-hand hot
wall. X = 0. and at the right-hand cold wall. X' = 1.

observed to be in very good agreement with the bench-
mark solutions previously referred to. Therefore, the
DOM is considered to be very efficient and accurate.
Figure 8 represents a total heat flux variation with
various wall emissivities ¢, at the hot wall (surface
1) for N=0.05 and w, = 0. As the wall cmissivily
increases, the intensity at the hot wall becomes strong
and it further increases the radiative heat flux and the
temperature of the medium inside. The temperature
gradient in the vicinity of the hot wall is thus reduced
and the conductive heat flux therein is reduced by as
much. This effect of emissivity is found to be more
pronounced for a thicker medium which has a higher
optical thickness. In the figure the present solutions
obtained by means of the S, approximation are shown
to be very accurate compared with the marked solu-
tions obtained by FEM [6]. In Fig. 9 the {ractional
radiative heat flux variation at the symmetry line
¥ = 0.5 and bottom wall {(surface 3) is illustrated. In

3.0
Ex|l Ss | FEM
25 1 o
0.8]~~——| ®
\ 05| ®
2.0 - 0.2

1.0

0.5 -

DIMENSIONLESS TOTAL HEAT FLUX §
o
T

0.0

0.0 0.5

0.1 0.2 0.3 0.4
DIMENSIONLESS COORDINATE Y

FiG. 8. Variation of total heat flux for various wall emiss-
ivities g, at the left-hand hot wall, X = 0.
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F1G. 9. Variation of fractional radiative heat flux for various
wall emissivities ¢, at the symmetry line, ¥ = 0.5, bottom
and top walls, ¥ = 0, 1.

general as ¢, increases, the radiation becomes domi-
nant owing to the strong intensity emitted from the
hot wall (surface 1). Along the bottom or top wall,
QR/Q is symmetrically distributed with a maximum
at its centre. However, on the symmetry line Q%/Q
steadily increases from the hot wall (X = 0) to the
coldwall (X = 1).

Figure 10 shows the effect of albedo w, and par-
ameter a, in the linearly anisotropic scattering phase
function @ on the total heat flux at the hot wall for
N =0and0.01. The values of ¢, = 1,0and — 1 denote
forward, isotropic and backward scattering, respec-
tively. As shown in the figure, the total heat flux Q is
significantly influenced by the type of scattering. In
order to check the accuracy the total heat flux for

1.2
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o 0.8+
=
]
4
& o8+
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S
%]
E 0.7 - N=0.0
&
a

0.6 I 1 1 1

0.0 0.1 0.2 0.3 0.4 0.5

DIMENSIONLESS COORDINATE Y

F1G. 10. Vanation of total heat flux for various scattering
albedos w,, and coefficients of linear anisotropic scattering
phase function a, at the left-hand and hot wall, X = 0.
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FiG. 11. Dimensionless temperature profiles for various
aspect ratios 7,/7, along the symmetry line, ¥ = 0.5.

the limiting case, N = 0, which characterizes a purely
radiating medium without conduction involved, is
compared with the solution obtained by the product-
integration method [14]. Note that the total heat flux
becomes higher as the parameter wqa, increases. The
reason is that the strong forward scattering intensifies
the amount of radiation in that direction. On the
contrary, the backward scattering diminishes the for-
ward radiative intensity. The case for wya, = 0 cor-
responds to a non-scattering medium in which only
absorption and emission take place.

A variation of dimensionless temperature along the
symmetry line for different aspect ratios (r,/t,,) with
N=40.1,s, =1 and w, =01is shown in Fig. I1. The
temperature profile for 1, /7, = 0.2 nearly approaches
that for the one-dimensional case, 7,/t, =0. It is
taken for granted that as 7,/7,, increases, the medium
temperature very quickly reaches the right-hand cold
wall temperature ©, = 0.5,

in Fig. 12, the total heat flux variation for various
characteristic optical thicknesses (z, or t,) of the
square enclosure with N = 0.001, ¢, = 1 and @y =0
is plotted along the symmetry line. In the figure, as
the characteristic optical thickness (z, or 7,) decreases
for fixed N == 0.001, the total heat flux increases. Phys-
ically the decrease in 7, or 1, with no change of N,
means a reduction of the spatial size of the square
enclosure because the value of each component, §, k
and T, in N is fixed in this case. Therefore, Fig. 12
illustrates that as the size of the square enclosure is
reduced, the heat loss from the enclosure increases.
This can be more clearly shown in the two-dimen-
sional configuration of heat line H* in Fig. 13 as was
done in Fig. 5. As the optical thickness increases, the
number of heat lines decreases and thus the total
heat loss from the enclosure decreases as well. The
comparison of the present results with those obtained
by the numerical method using the generalized expon-



2272

1.5
< TOrTy S+ |[Yuen'’s
0.1 e——— a

>

= Il 05 ........

2 0 o

&9 1.V —_— O

2.0 ||—--—

P L 50 [-——! o

= 1.0

T N for all cases N=0.001
~ -

:cl - ~\\ Ew=1

S - ~ . =0

: \ \\\.A\ T/ Tw=1

7] ~

205 -

z

=) ~<

7 S~

Z -

5]

Z

a

0.0 — i [ L [
0.0 0.2 0.4 0.8 0.8 1.0

DIMENSIONLESS COORDINATE X

F1G. 12. Variation of the total heat flux for various optical
widths or heights (7, or t,) of the square enclosure

(t,/t,; = 1) along the symmeiry line, ¥ = 0.5.

ential integral function {13] shows a good agreement
as shown in Fig. 12.

4. CONCLUSIONS

In this study a combined radiative and conductive
heat transfer has been investigated in rectangular
enclosures. The accuracy and efficiency of DOM (S,
approximation) were validated by comparing the
numerical results for the non-scattering radiation-

o
3

DIMENSIONLESS COORDINATE Y

DIMENSIONLESS COORDINATE X

FiG. 13. Isotherms for the lower half region and heat lines
for the upper half region with three optical widths or heights
(t, ort,), 0.1, 1.0 and 5.0

T. Y. Kim and S. W. BAtk

ag woll ac
m 4as weu as

scattering pure radiation problem with other bench-
mark solutions. It is then applied to the uniso-
tropicaily scattering radiation--conduction problem to
seek new solutions. The results for the temperature
distribution and isothermal contours were illustrated.
Additionally to casily figure out the involved phenom-
cna, the heat lines and the vectorial plots of the

l‘nnr‘hu"l\rn radiative and total heat
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introduced and discussed. Conclusively the discrete
ordinates method is considered to be highly integrable
with other finite differenced transport equations. Fur-
thermore, it was found that only a recasonably short
computational time was required to vield quite accur-
ate solutions.
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ANALYSE A L’AIDE DE LA METHODE DES ORDONNEES DISCRETES DE
CONDUCTION THERMIQUE DANS UNE CAVITE RECTANGULAIRE
BIDIMENSIONNELLE

Résumé—Un outil efficace relatif au transfert radiatif multidimensionnel est recherché pour analyser les
problémes thermigues variés et combinés & d’autres modes de transfert de chaleur ou avec la combustion.
On examine la méthode des ordonnées discrétes (DOM) pour le couplage entre rayonnement et combustion
thermiques dans des cavités rectangulaires avec ou sans diffusion rayonnante du milieu. Les résultats sont
comparés avec d’autres solutions approchées. L'efficacité et 1a précision de la méthode sont validées.

UNTERSUCHUNG DES KOMBINIERTEN WARMEUBERGANGS DURCH LEITUNG
UND STRAHLUNG IN EINEM ZWEIDIMENSIONALEN RECHTECKIGEN HOHLRAUM
UNTER VERWENDUNG DES VERFAHRENS DISKRETER ORDINATEN

Zusammenfassung—Es besteht ein dringender Bedarf fiir ein effizientes Werkzeug zur Behandlung der
mehrdimensionalen Warmetibertragung durch Strahlung, um unterschiedliche thermische Probleme, bei
denen andere Arten der Wirmeitbertragung oder aber Verbrennungsvorginge auftreten, zu untersuchen.
In der vorliegenden Arbeit wird das Verfahren der diskreten Ordinaten (DOM) fir den gekoppelten
Wiirmeiibergang durch Strahlung und Leitung in einem rechteckigen Hohlraum untersucht, in dem sich
entweder ein nicht-streuendes oder ein streuendes Medium befindet. Die Ergebnisse werden mit anderen
Niherungslésungen verglichen. Die Wirksamkeit und Genauigkeit von DOM wird dabei bestitigt.

AHAJIN3 B3AMMOCBA3ZAHHOTO KOHAVKTHUBHOI'O U JIVUUCTOTO
TEIJIOMEPEHOCA B IBYMEPHOH MPSMOYTOJIBHON C UCITOJIL30BAHUEM
METOOA AUCKPETHBLIX KOOPJUHAT

Anvoramns—CyIeCTBYeT ocTpasi HeoO6xomquMocTh B 3(peKTHBHOM MeTONe MCCIENOBaHHS MHOrOMep-

HOTO JYYHCTOro TEIUTONEPEHOCA AN aHAH3a Pas3/IMYHBIX TETUIOBLIX 3a[a4, CBA3AHHBIX TH6O ¢ ApYyruMH

BHAAMH Temjionepenoca, Jubo ¢ SBICHHSMH ropeHus. B Hacrosmuei paboTe MeTONOM IHCKPETHBIX

xoopauHat (DOM) uccaeyeTcs B3aHMOCBS3AHHBIH JTYIHCTHIH ¥ KOHXYKTHBHBI TENIONSPEHOC B NMps-

MOYTOJIBHBIX NC/IOCTSX, B KOTOPHIX COACPXHTCH HEPacCeHBAIOWAN MM pacceuBaromas cpeaa. Cpasne-

HHE NOJIYYEHHBIX PE3YALTATOB ¢ APYTUMH NPHOTHXEHHBIME PELICHUAMH NOATBepXnaeT sddexTusHOCTS
¥ TOYHOCTE METOZA JHCKPETHBIX KOOPIHHAT.



